Dirac-bracket approach to nearly geostrophic Hamiltonian balanced models
نویسندگان
چکیده
Dirac’s theory of constrained Hamiltonian systems is applied to derive the Poisson structure of a class of balanced models describing the slow dynamics of geophysical flows. Working with the Poisson structure, instead of the canonical Hamiltonian structure previously considered in this context, allows the standard Eulerian description of fluids to be used, with no need for Lagrangian variables, and leads to completely explicit balanced equations of motion. The balanced models are derived for a class of multilayer, isentropic or isopycnal, hydrostatic models by constraining the velocity field to be an arbitrary pseudodifferential function of the mass field. Particularization to the geostrophic constraint and a slight modification thereof provides the Poisson formulation of (a multilayer version of) Salmon’s L1 model and of the semi-geostrophic model, respectively. A higher-order balanced model is also derived using a constraint that is more accurate than geostrophy.
منابع مشابه
Semigeostrophic theory as a Dirac-bracket projection
This paper presents a general method for deriving approximate dynamical equations that satisfy a prescribed constraint typically chosen to filter out unwanted highfrequency motions. The approximate equations take a simple general form in arbitrary phase-space coordinates. The family of semigeostrophic equations for rapidly rotating flow derived by Salmon (1983, 1985) fits this general form when...
متن کاملDynamics on the Sphere *
Salmon's nearly geostrophic model for rotating shallow-water flow is derived in full spherical geometry. The model, which results upon constraining the velocity field to the height field in Hamilton's principle for rotating shallow-water dynamics, constitutes an important prototype of Hamiltonian balanced models. Instead of Salmon's original approach, which consists in taking variations of part...
متن کاملDerivation of reduced two-dimensional fluid models via Dirac’s theory of constrained Hamiltonian systems
We present a Hamiltonian derivation of a class of reduced plasma two-dimensional fluid models, an example being the Charney–Hasegawa–Mima equation. These models are obtained from the same parent Hamiltonian model, which consists of the ion momentum equation coupled to the continuity equation, by imposing dynamical constraints. It is shown that the Poisson bracket associated with these reduced m...
متن کاملar X iv : h ep - t h / 04 12 28 6 v 2 2 4 D ec 2 00 4 Realizations of observables in Hamiltonian systems with first class constraints
In a Hamiltonian system with first class constraints observables can be defined as elements of a quotient Poisson bracket algebra. In the gauge fixing approach observables form a quotient Dirac bracket algebra. We show that these two algebras are isomorphic. A new realization of the observable algebras through the original Poisson bracket is found.Generators, brackets and pointwise products of ...
متن کاملWave-activity conservation laws and stability theorems for semi-geostrophic dynamics. Part 2. Pseudoenergy-based theory
This paper represents the second part of a study of semi-geostrophic (SG) geophysical fluid dynamics. SG dynamics shares certain attractive properties with the better known and more widely used quasi-geostrophic (QG) model, but is also a good prototype for balanced models that are more accurate than QG dynamics. The development of such balanced models is an area of great current interest. The g...
متن کامل